

Nonwoven Noise Combination of Resources

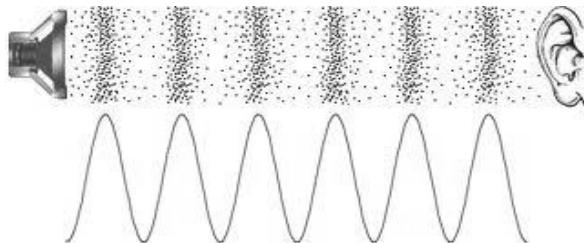
Shameka, Ahmed

Alexandria University, Egypt

ABSTRACT

Noise is a main reason of industrial exhaustion, irritation, condensed efficiency and industrial accidents. Incessant information of 90dB or above is insecure to trial. Connection of noise absorbent obstacles among the source and the focuses is one of the central approaches of noise control. Measurement techniques used to describe the noise absorptive possessions of a substantial are reverberant field technique, impedance tube process and steady state technique. Noise absorbent textile possessions particularly nonwoven arrangements or reprocessed possessions have low manufacture costs, low specific significance and are artistically attractive. Acoustic insulation and arrangement possessions of nonwoven materials depend on fiber geometry and fiber preparation within the fabric construction.

KEYWORDS: *Noise combination, Textile industry, Noise control.*


I INTRODUCTION

Noise is an significant part of our life but disagreeable and surplus noise is careful as noise. Noise may cause sensor-motor, neuro-vegetative and metabolic disorders. Noise is a major cause of industrial fatigue, irritation, reduced productivity and work-related accidents. Incessant contact of 90dB or above is unsafe to hearing. Fitting of noise porous barriers (made from timber and textiles) between the source and the subject is one of the main method of noise control. Hard, rigid resources like concrete and brick have almost no noise combination. Other building resources (lightweight plaster walls, windows and different panels or floors on studs)work as membrane absorbers and contribute significantly to the low-frequency combination. Carpet, velour cloth and serious curtain show good audio possessions (Hankuk, 2011). Textile resources are used in many noise insulation applications in interior design products (panels and upholstery), automotive insulation (carpet, trunk liners and roof paneling) and machine noise insulation (duct liner and trunk). Polyester panels are a great choice for better noise classrooms. Acoustical wall panel made from 100% polyester (60% PET-recycled thread and 40% PET-virgin fiber), are ecological and provide great noise mixture.

Acoustic ceilings complete of fiberglass, inorganic fiber, wood, or metallic control the noise quality by arrangement and distribution of noise waves. In automobiles textile possessions are used to improve comfort, thermal protection, cabin air filters, security and noise protection. Silk weavers have established lightweight, glowing curtain possessions recognized as ‘noise satisfying curtain’, which are outstanding in fascinating noise. With a gap of 15cm among curtain and wall, it can fascinate up to five periods extra noise than typical lightweight curtains. Nonwovenpenetrablepossessionsparticularlyreprocessedpossessionshave low manufacture costs, low detailed gravity and are appealingly attractive.

II MEASUREMENT OF NOISE COMBINATION

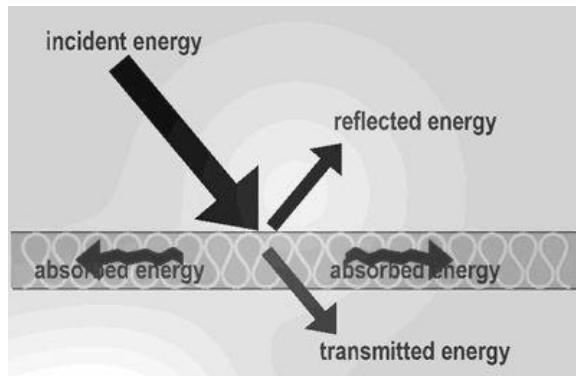

Noise is an interchange of compression that broadcasts through a flexible intermediate such as air which produces an auditory. Methodical study of noise connecting the effect of reproduction, diversion, arrangement, deflection and interfering is known as “Audibility”.

FIG 1 Alternative patterns of dense and sparse particles

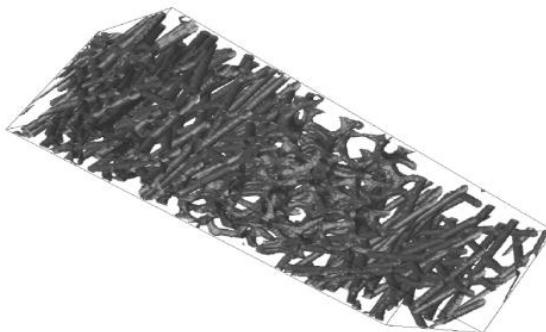
Noise combination is an energy alteration process. The moving energy of the noise is changed to heat vitality when the noise attacks the cells or threads. Whereas dispersed replication splits the reproduced noise wave in numerous instructions. Diffusive surfaces are used to avoid echoes and noise absorptions particularly in rooms calculated for music. Noise wave influences a surface of acoustic substantial during its dissemination in air and gets separated into three apparatuses: are produced part, a communicated part and an absorbed part. A receiver on the similar side as the noise source can obtain both the occurrence and reproduced noise waves.

The capability of the acoustic substantial to absorb the occurrence noise wave can be evaluated by comparing the noise power levels amongst the reproduced noise wave and the incident noise wave.

FIG 2 Noise wave propagation

Measurement methods used to describe the noise absorptive possessions of a substantial are reverberant field technique, impedance tube technique and steady state technique. Reverberant field technique is used to amount the routine of a substantial exposed to a randomly occurrence noise wave, which precisely happens when the material is in diffusive field. Impedance tube technique uses plane noise waves that attack the material conservative and so the noise combination constant is called normal occurrence noise combination coefficient. Steady state method (ASTM E336-71) is used to measure the broadcast coefficient of the possessions.

A third microphone or even a second pair of microphone can be positioned behind the test illustration in a second impedance tube. Acoustical possessions of fabrics are measured by impedance tube technique (ASTM C 384-98). The impedance tube process uses very minor test samples. For large test models, large reverberation rooms are used and the technique is known as acoustic cavity method. The measurement of noise combination of the nonwoven is based on ASTM E1050 using a tube, two microphones and a numerical frequency analyzer as shown in Figure 3.


A noise source is expressively concerned at one end of the impedance tube and the substantial example is situated at the additional end. The loudspeaker produces broadband, stationary random noise waves. These occurrence noise signals broadcast as plane waves in the tube and hit the example surface. The reproduced wave's signals are selected up and associated to the incident noise waves.

The incidence of effect is tested by the thickness of the tube. A great tube is used to measure the noise combination in the low incidence range, whereas a small tube of 29 mm diameter is used for high-frequency noise waves.

2.1 Porous absorbers

Porous absorbers are the most frequently used fascinating possessions, where thickness plays significant role in noise arrangement. These possessions permit air to flow into clear structure where noise energy is

transformed to heat energy. Common porous absorbers comprise carpet, draperies, spray-applied roughage, sparkling covering and fibrous mineral wool/glass fiber (Figure 4).

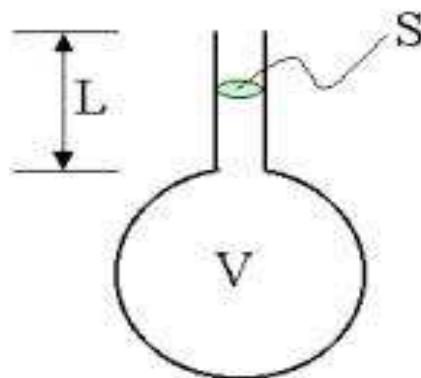


FIG 4 Porous absorbers

2.2 Reverberate

Reverberating blend does not depend on the possessions of the substantial in the similar way as for porous combination. The combination is obtained by energy damages in a fluctuating system. There are two central types of resonators: Membrane and Cavity Resonators. Cavity resonators as shown in Figure 5, classically act to captivate noise in a narrow frequency range. These resonators comprise some perforated possessions; e.g. HELMHOLTZ resonator. It has the shape of a bottle and the resonant frequency is administered by the size of the introductory, the length of neck and the capacity of air surrounded in the chamber.

Board absorbers or membrane resonator is a thin, solid board at a detachment from an inflexible wall with a surrounded air volume in among Panel absorbers are non-rigid, non-porous possessions which are positioned over a territory that trembles in a flexural mode in answer to noise compression applied by adjacent air particles. Common panel absorbers comprise thin wood boards over surround, lightweight impermeable ceiling and floors, glazing and other large exteriors accomplished of resonating in answer to noise.

FIG 5 Cavity resonators

2.3 Smart Absorbing Resources

More recently, the use of active noise regulator has been collective with inactive control to progress hybrid noise absorbers. Active control knowledge performs to be the only way to decrease the low-frequency noise apparatuses. Therefore, a hybrid absorber can fascinate the occurrence noise over a wide frequency range. Figure 6 shows the standard of a hybrid absorber, which associations inactive permeable possessions of a porous layer and energetic control at its rear face, where the organizer can be executed using digital methods.

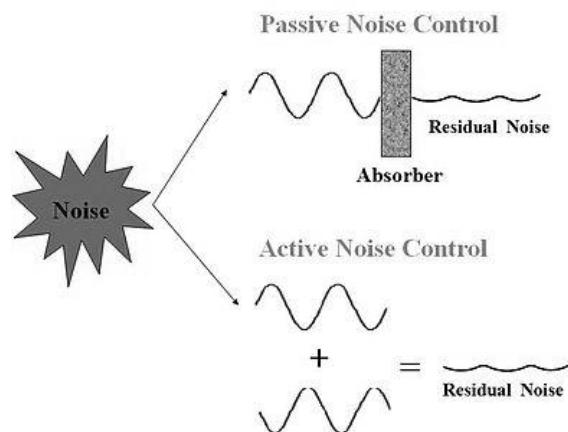


FIG 6 Hybrid noise absorber

III PROPOSED SYSTEM

The effectiveness of a substantial as a noise barrier depends on occurrence of the noise wave to which substantial is exposed, fabric weight per unit part, air porousness of the substrate, thickness and construction.

Acoustic protection and arrangement possessions of nonwoven materials depend on fiber geometry and fiber preparation within the fabric assembly.

3.1 Fiber Type

In a study on polyester, polypropylene, cotton and viscose noise permeable material of dissimilar fabric heaviness each part zone, it was designated that polyester fiber materials show highest noise arrangement monitored by cotton fiber fabrics, polypropylene/cotton. Among hollow polyester fibers, solid polyester fibers and jute threads, hollow polyester fiber material shows maximum noise combination, whereas solid polyester threads show the lowest. Wide range of fiber length, diameter, and crimp and spirally of wool fibers permits it to absorb noise over a wide assortment of occurrences.

3.2 Fiber Size

Thin fibers can change more effortlessly than thick threads on noise waves. A study show that fine denier fiber achieve better acoustically than uncouth denier fibers. At the same time micro denier fibers deliver an affected growth in acoustical concert.

3.3 Fiber Surface Area and Cross Section

Fiber surface area has direct association with noise combination. This is due to the purpose that resistance between fibers and air growths with amplified fiber surface area. The noise combination in porous substantial is due to the viscidness of air compression in the pores or the friction of pore walls. Consequently, noise combination intensifications with growth in detailed surface area of fiber.

3.4 Air Permeability

One of the most important qualities that influence the noise combination appearances of an woven material is the detailed flow confrontation per unit thickness. In common, when noise enters these possessions, its amplitude is decreased by friction as the waves try to move through the tortuous passages.

3.5 Porosity

Number, size and type of apertures are significant for the noise combination apparatus in porous possessions. This means, there should be sufficient pores on the surface of the substantial for the noise to pass

complete and get diminished. The porosity of a absorbent fabric is exact as the ratio of the quantity of the seats in the fabric to its total quantity. Such possessions can be measured as noise control essentials in a wide range of requests.

3.6 Tortuosity

Tortuosity is defined as the proportion of definite flow path length to the length of the porous average in the way of macroscopic flow. Higher value of tortuosity would consequently designate longer, more difficult and sinuous path thus resulting in better resistance to fluid/noise wave flow. Tortuosity also straight inspirations the heat and electric conductivity, propagation of acoustic waves, percolation and absorbance competence in stringy absorbent media. It has also remained said that the worth of tortuosity regulates the high incidence performance of noise fascinating porous possessions. Tortuosity in nonwoven assembly's intensifications with increase in punch compactness or web thickness and reduction in fiber diameter.

3.7 Thickness

Low frequency noise combination has through relationship with thickness. Noise combination for low frequency noise waves intensifications as fabric thickness growths, whereas fabric thickness does not disturb the noise combination of high occurrence waves. The rule of thumb states that active noise combination of a porous absorber is attained when the material viscosity is about one tenth of the wavelength of the incident noise. The smelted low melting-point polyester fiber classified the nonwoven produced a decrease in nonwoven thickness and made the structure in the web shrink through the bonding procedure, which also occasioned in the devastation of the micro-pore of the nonwoven assembly. The growth of the low melting point polyester substances caused the noise combination constant to reduction because of the decrease in the nonwoven thickness.

3.8 Compactness

Compactness of a substantial is often measured to be the significant factor that directs the noise combination behavior of the material. At the similar time, cost of an acoustical fabric is in a straight line related to its density. Less dense and more open structure absorbs noise of low frequencies. Denser structure perform better for frequencies above than 2000 Hz.

IV ADDITION OF A WOVEN FABRIC LAYER IN NONWOVEN FIBER WEBS

The noise agreement by mixture of many layers of nonwoven fiber nets of high noise - mixture constants and a layer of woven fabric of high noise - indication constant has been on purpose. The restrained noise arrangement constants, in the audible-frequency variety, of such arrangements were meaningfully developed than those of the fiber-web layers by themselves. In order to regulate experimentally the optimum position of the woven material comparative to the fiber-web layers, the NAC of a arrangement of six layers of strand fiber web and one coating of woven material made of Kevlar have been forbidden. The highest noise mixture was reached when the layer neighboring to the source of noise was the entangled fabric. In this case, the influence of the woven fabric to the noise-combination capacity of the nonwoven fiber webs was most important in the lower-frequency range.

4.1 Plasma Treatment

The plasma treatment on nonwoven materials variations their noise mixture, viscoelastic performance, fabric heaviness and pore size by altering the fiber surface morphology. Plasma action has both chemical and mechanical properties on fibers, surface engraving and ionic arraigning. Design happens when the ions with high kinematic energy hit the surface, eliminate the weak portion or contaminated region of fibers. Hollow polyester fabric display the improved noise arrangement and viscoelastic presentation after the action with better pore sizes, while reliable polyester fabric exhibition insignificant changes. The cellulose fabrics are affected more by plasma handling as associated to polyester fabrics in terms of fabric weight loss and pore size. Jute fabric establishes the reduced noise combination and viscoelastic performance, while kenaf fabric shows the augmented noise combination with the unchanged viscoelastic behavior after the treatment.

4.2 Orientation of Web

The nonwovens absorber which has an unprinted web in the middle layer has an urbanized NAC than nonwovens which have a totally oriented web arrangement, but the difference is trivial. Web orientation effects were evaluated complete the nonwoven collected of the same fiber insides, but with dissimilar orientation angles, manufactured and measured during the carding procedure.

V CONCLUSION

With the sustained improvement of new technologies, mainly the movement concerning faster and more authoritative apparatus, the conservational impression of noise is a matter of growing apprehension, and significant determinations are being completed to progress and use noise reduction resources. In this exploration, a study on the consequence of numerous fabric limitations, such as fiber excellence, surface effect, punch thickness, areal density, and chemical bonding was carried out.

The consequences establish that, fiber excellence has strong inspiration on sound concentration of nonwoven fabrics. The consequences also demonstrate that a plain external section had the maximum sound absorption constant monitored by velour and cord textured samples. This was determined to be due to the dissimilar instrument of fiber transfer by fork and felting needles. It was also found that intensification in a real compactness and punch density completely affected the sound absorption competence of needled fabrics; however, a slight reduction in NRC standards of examples with lower areal thicknesses was detected as punch density increased from 90/cm² to 105/cm².

REFERENCE

- [1] Arenas, J. P., & Crocker, M. J. (2010). Recent trends in porous sound-absorbing materials. *Sound & Vibration*, 12-17
- [2] Atwal, M. S., (1982). The Acoustic properties of textile fabrics. PhD Thesis, Leicester Polytechnic, Leicestero, England
- [3] Jayaraman, K. A.(2005). Acoustical absorptive properties of nonwovens., North Carolina university
- [4] Lee, Y., &Joo, C. (2003). Sound absorption properties of recycled polyester fibrous assembly absorbers. *Autex Research Journal*, 3, 78-84.
- [5] Lou, C. W., Lin, J. H., & Su, K. H. (2005). Recycling Polyester and Polypropylene Nonwoven Selvages to Produce Functional Sound Absorption Composites. *Textile Res. J.*, 75, 390–394
- [6] Mahmoud, A. A., Ibrahim, G. E., & Mahmoud E. R. (2011). Using nonwoven hollow fibers to improve cars interior acoustic properties. *Life Science Journal*, 8, 344-351
- [7] Na, Y., & Cho, G. (2010). Sound Absorption and Viscoelastic Property of Acoustical Automotive Nonwovens and Their Plasma Treatment. *Fibers and Polymers*, 11, 782-789
- [8] Shoshani, Y. K. (1991). Noise absorption by a combination of woven and nonwoven fabrics. *J. Text. Inst.*, 82, 500-503.
- [9] Tascan, M. (2008). Effects of fiber denier, fiber cross-sectional shape and fabric density on acoustical behavior of vertically lapped nonwoven fabrics. *Journal of Engineered Fibers and Fabrics*, 3, 32-38
- [10] Tascan, M., & Vaughn, E. A. (2008). Effects of total surface area and fabric density on the acoustical behavior of needle punched nonwoven fabrics. *Textile Research Journal*, 78, 289-296
- [11] Teli M. D., Pal A., & Roy D. (2007). Efficacy of nonwoven materials as sound insulator. *IJFTR*, 32, 202-206
- [12] Thomann, M., & Jackson, S.(2009). The Acoustical Properties of Wool Carpet. *Historic Floor covering and Textile*.
- [13] Vallabh, S. R., Banks-Lee, P., &Seyam, A. F. (2010). New approach for determining tortuosity in fibrous porous media. *Journal of Engineered Fibers and Fabrics*, 5, 7-15.