

An investigational analysis on performance of heap Raft organization

Duck-Hwan, Chin-Hwa

Research Scholar, Department of Earth Science,
Gwangju Institute of Science and Technology
South Korea

ABSTRACT

An investigational plan in laboratory is conducted on copy mountain raft in sand soil. The plan of the investigational plan is to learn the appearance of mountain raft association organization subjected to upright load. The investigational plan includes the replica test on unpiled raft, raft maintain by Solitary Mountain and mountain groups. The duplication piles used in this test are non displacement piles. In the laboratory test, replica gentle steel piles of diameter 10mm and length 200mm were used, represent slenderness ratio, L/D of 20.

The variation in the performance ability is representing by load expansion ratio and the decrease in conclusion is representing by declaration diminution ratio. The heaviness of number of piles and raft thickness on load expansion ratio and completion diminution ratio are presented and discussed. The results of the tests show that as the number of piles beneath the raft increases, load development ratio and resolution decrease ratio increase and proportion of load accepted by the raft decreases. Also, there is an unimportant consequence on load expansion ratio and declaration decrease ratio with augment in raft thickness, while raft thickness has a negligible importance on the load accepted by the raft.

Key words: Solitary, Mountain, Raft, piles, model test, sand soil.

1. INTRODUCTION

The mountain raft establishment organization has only just been extensively used for many countries to support dissimilar types of arrangement like bridges, buildings and manufacturing plants in dissimilar types of soil. The Piles in arrangement with raft plays a significant role in resolution decrease and thus can lead to inexpensive plan without compromise the security of the structure. The concept of using piles as resolution reducers was first planned by Burland et al. 1977. More than a few information were in print on the use of piles as resolution reducers.

Mountain raft organization arrangement on grimy dust subjected to horizontal and perpendicular loading, to study the load-settlement performance and load portion amongst mountain and raft in piled raft foundation scheme. Conte et al. 2003 conduct a centrifuge test on ton raft foundation scheme to end the inflexibility of piled raft organization due to significance of difference in piles and push geometry.

An investigational examination on pile raft organization collection in grimy soil, to scrutinize the arrangement of pile raft association due to the result of heap system and declaration among the raft and heap. This imitation test on a mountain raft association on yielding earth with raft having dissimilar thicknesses on 4,9 and 16 piles, to study the end result of mountain duration and number of heaps on load allocation between heap and the raft and proclamation reduction.

2. PROPOSED SYSTEM

The main reason of the investigational work was to learn the load-settlement behavior of mountain raft base system and load transport mechanism connecting the raft and piles with dissimilar raft thicknesses and dissimilar pile configurations. Total twelve tests were conducted in the lab. Three tests were carried out on unpiled raft and nine tests were carried out on mountain rafts. The plan of lab replica test on unpiled raft and piled raft foundations are available in Table 1. The mountain configurations and dimensions of a replica raft of mountain raft are shown in Figure 1. The dimensions of Replica Mountain and raft were chosen to ensure no stress attentiveness at the edge of the tank. The elevation of soil was two times better than the mountain length to evade the consequence of an inflexible bottom of the dust reservoir on the performance of piles.

2.1 Tested soil

A waterless sand model was used as establishment soil in this investigation. The open significance of sand was established to be 2.65. The smallest amount and greatest dry unit weights of sand were established to be 14.40 kN/m³ and 16.90 kN/m³, in that order. The element size allocation was strong-minded using the dry sieve technique and results are shown in fig 2. The constancy co-efficient (Cu) and co-efficient of curve (Cc) for the sand be 1.36 and 1.03, likewise. According to the Indian standard soil categorization, the soil is classified as poorly graded sand, SP. The rub down was pouring in the boiler at a unit heaviness of 15.80 kN/m³ i.e. at 60% family member density. The angle of internal friction at a unit weight of 15.80 kN/m³ was found to be 36.5°. The secant modulus (E50) at component heaviness 15.80 kN/m³ was established to be 10.725 MPa, strong-minded as of triaxial test.

Test Explanation	Model Raft dimensions (mm x mm x mm)	L/D	S/D	Number of Test Performed
Unpiled raft	160x160x5	-	-	1
	160x160x10			1
	160x160x15			1
Raft + 1 pile	160x160x5	10	-	1
	160x160x10			1
	160x160x15			1
Raft + 4 piles	160x160x5	10	3	1
	160x160x10			1
	160x160x15			1
Raft + 9 piles	160x160x5	10	3	1
	160x160x10			1
	160x160x15			1

Table 1: Outline of the copy tests on unpiled and piled rafts.

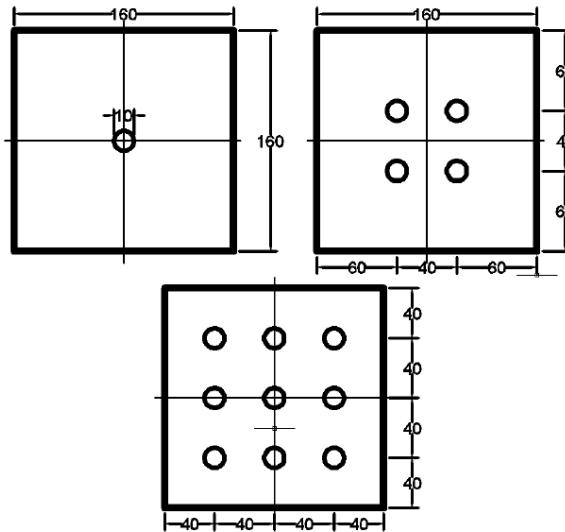


Figure 1: Deliberate cases of pile raft stand (unit: mm)

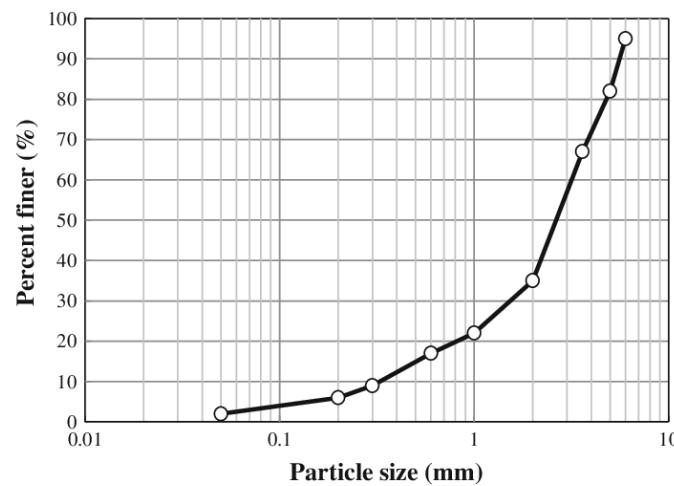


Figure 2: Particle size distribution curve

2.2 Piled raft model

The replica raft was complete the soft steel plates having a square figure with dissimilar thicknesses. The dimensions of rafts were 160mm x 160mm x 5mm, 160mm x 160mm x 10mm and 160mm x 160mm x 15mm, correspondingly. The replica heaps were made up of the soft steel of diameter 10mm.

The heap measurement lengthwise of 200mm was used in the research, characterize slenderness ratio of 20. The modulus of elasticity and Poisson's ratio of mild steel raft and mountain were 1.8×10^5 MPa and 0.2 equally. To formulate definite inflexible involvement among the heap and raft, top head of every heap was provided with a bolt of 6mm diameter and 25mm long to attach the pile to the raft during nuts.

3. EXPERIMENTAL SETUP

The reservoir is through from steel, having measurement 850 mm x 850 mm in plan and 500 mm in depth. The loading enclose consists of four vertical columns of 1.0 m height, two on each side and two horizontal beams. The ray consists of hand operate hydraulic jack set at the centre as shown in Figure3. Standardized load cell of 10 KN capabilities was friendly to the jack to determine the load. Two linear disarticulation transducers (LVDTs) of 0.01 mm precision were positioned at the central point side of the raft, to measure vertical dislocation. Figure 4 shows the strain gauges mounted along the pile shaft, to measure the allocation of forces along the ray.

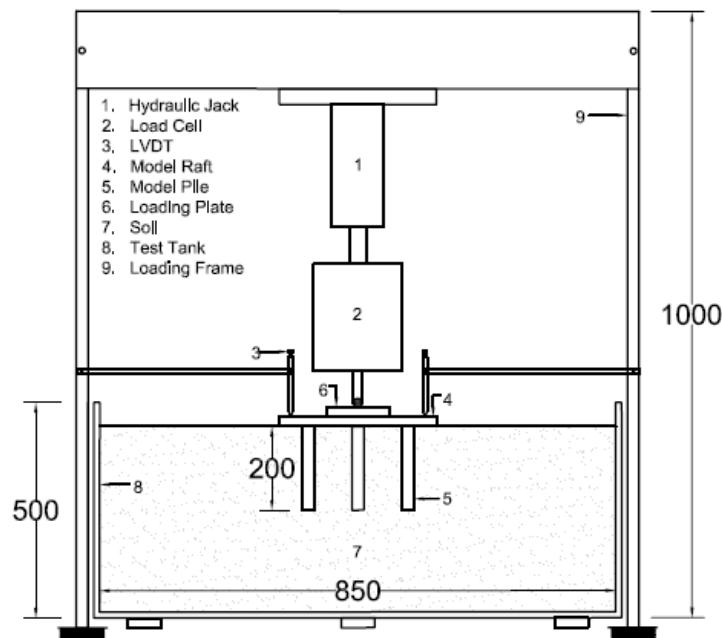


Figure 3: Model test set up (unit: mm)

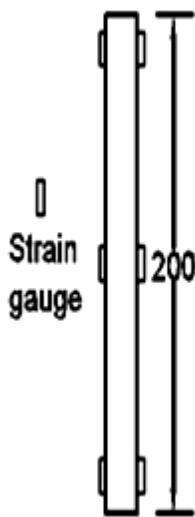


Figure 4: Instrumented pile

4. PERFORMANCE ANALYSIS

The representation tests consequences obtain from lab tests are investigated and discussed in this part. The arrangement equal to 10% of pile diameter or raft width is often adopted to define the eventual load capability in establishment plan. In this representation tests, loading was sustained till the raft conclusion reaches 20mm.

4.1 Unpiled raft

Figure 5 show the load- agreement curves for the unpiled raft models of unlike raft thicknesses. It can be famous that the load transport aptitude of the unpiled raft somewhat increase with the make bigger in raft width.

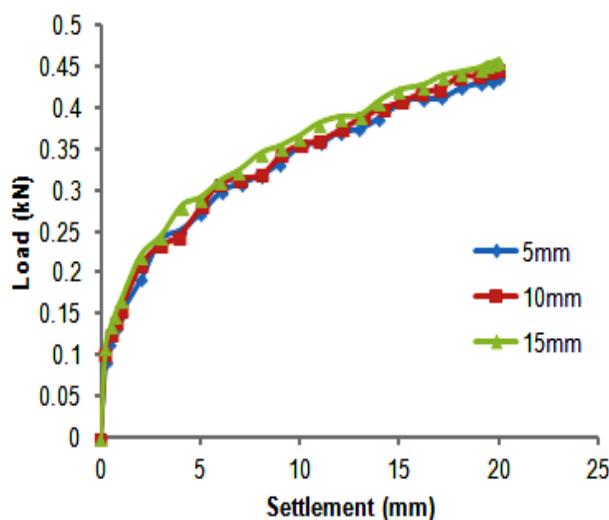
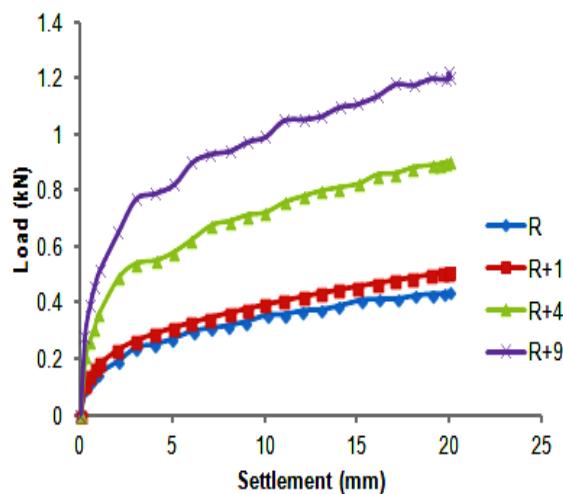



Figure 5: Load-settlement curves for unpiled rafts

4.2 Piled raft

In this part, the belongings of numeral of heap and raft thickness, on the performance of heap propel are scrutinize and discussed. In the following figures, symbols R, R+1, R+4, R+9 are used which represents un heap raft, raft carry by 1 heap, raft hold up by 4 heaps and raft hold by 9 heaps, equally. Figures 6 show the load - resolution curve of un mound raft and push maintain by 1, 4 and 9 heaps for push thicknesses 5mm, 10mm and 15mm, evenly.

As shown in these figure, the load carrying capability of piled raft amplify as the number of piles underneath the raft increases. This supplement is more often than not due to the add two of amount of load communal by the piles due to the intensify of the figure of piles. In this study, due to the presence of piles under the raft, the development in load capability of raft, at 10mm and 20mm settlements is represented by non-dimensional stricture called Load development ratio, which was define as the ratio of load approved by the piled raft and unpiled raft at 10mm and 20mm settlement.

Figure 6: Influence of numeral of piles on load completion curves of mountain raft (t=5mm)

5. CONCLUSION

This document has obtainable investigational results of minute scale lab replica test on sand, to investigate the load- arrangement performance and consignment distribution among the heaps and raft. From the consequences of this learn, the next extinction can be drawn. The load manner ability of piled raft increase as the quantity of piles under the raft increase. Load improvement ratio increases at 10mm and 20mm resolution, as the numeral of pile increase. The raft width has unimportant consequence on the arrangement and the loading sharing between heaps and raft. The competence of piled push base scheme in plunging resolution is negligible beyond a certain figure of piles.

REFERENCES

[1] Burland J.B., Broms B.B., and de Mello, V.F.B., (1977), Behavior of foundations and structures, Proc.9 ICSMFE, Tokyo 2, pp 495-546.

- [2] Bajad S.P., and Sahu R.B., (2008), An experimental study on the behaviour of vertically loaded piled raft on soft clay, The 12th Intl. Conf. of International Association for Computer Methods and Advances in Geomechanics (IACMAG), pp 84–90.
- [3] Cooke R.W., (1986), Piled raft foundations on stiff clays, Contribution to design Philosophy. *Geotechnique*, 35(2),pp 169-203.
- [4] Clancy P., and Randolph, M.F.,(1993),An approximate analysis procedure for piled raft foundations, *Internatonal Journal of Numerical and Analytical Methods in Geomechanics*, 17(12),pp 849–869.
- [5] Cunha R.P., Poulos H.G., and Small, J.C.,(2001),Investigation of design alternatives for a piled raft case history, *Journal of Geotechnical and Geoenvironmental Engineering*, 127(8),pp 635–641.
- [6] Conte G., Mandolini A., Randolph M.F.,(2003),Centrifuge modelling to investigate the performance of piled Rafts, *Proceedings of the 4th international Geotechnical seminar on deep foundations on bored and auger Piles*, Van Impe, W F Ed, Millpress, Rotterdam, pp 359-366.
- [7] Cerato A.B., Lutenegger A.J.,(2006),Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base, *Journal of Geotechnical and Geoenvironmental Engineering*, 132(11), pp 1496–501.
- [8] El-Garhy B., Galil A.A., Youssef A.F., Raia M.A.,(2013),Behavior of raft on settlement reducing piles: Experimental model study, *Journal of Rock Mechanics and Geotechnical Engineering*, pp 389–399.
- [9] Fioravante V., Giretti D., Jamiolkowski M., (2008),Physical modelling of raft on settlement reducing piles, *From research to practice in Geotechnical Engineering*, Reston, pp 206–39.
- [10] Fioravante V., and Giretti D.,(2010), Contact versus Noncontact Piled Raft Foundations, *Canadian Geotechnical Journal*, 47(11), pp 1271–1287.
- [11] Horikoshi K., and Randolph M.F., (1996), Centrifuge modelling of piled raft foundation on clay, *Geotechnique*, 46(4), pp 741–752.
- [12] Horikoshi K., Randolph M.F.,(1999), Estimation of overall settlement of piled rafts, *Soils and Foundations*, 39(2), pp 59–68.
- [13] Horikoshi K., Matsumoto T., Hashizume Y., Watanabe T., Fukuyama H.,(2003), Performance of piled raft foundations subjected to static horizontal loads, *International, Journal of Physical Modelling in Geotechnics*, 3(2), pp.37–50.
- [14] Kim K.N., Lee S.H., Kim K.S., Chung C.K., Kim M.M., and Lee H.S.,(2001), Optimal pile arrangement for minimizing differential settlements in piled raft foundations, *Computational Geotechniques*, 28(4),pp 235–253.
- [15] Lee J., Salgado R.,(1999),Determination of pile base resistance in sands, *Journal of Geotechnical and Geoenvironmental Engineering*, 125(8), pp 673–83.
- [16] Lee S.H., and Chung C.K.,(2005),An experimental study of the interaction of vertical loaded pile groups in sand, *Canadian Geotechnical Journal*, vol 42, pp 1485-1493.
- [17] Lee J., Salgado R.,(2005),Estimation of bearing capacity of circular footings on sands based on cone penetration test, *Journal of Geotechnical and Geoenvironmental Engineering*, 131(4), pp 442–52.
- [18] Poulos H.G., and Davis E.H.,(1980),*Pile foundation analysis and design*, Wiley, New York.
- [19] Poulos H.G.,(2001),*Piled raft foundations: Design and applications*, *Geotechnique*, 51(2), pp 95–113.
- [20] Phung D.L.,(2010),*Piled raft-a cost-effective foundation method for high-rises*, *Geotechnical Engineering Journal of the SEAGS and AGSSEA*, 41(3), pp.1–12.
- [21] Randolph M. F.,(1994),*Design methods for pile groups and piled rafts*,*Proc., 13th Int. Conference on Soil Mechanics and Foundation Engineering*, 5, pp.61–82.
- [22] Singh N.T., and Singh B.,(2008),*Interaction analyses for piled rafts in cohesive soil*, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, pp 3289-3296.